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impact protein function and localization, largely via mod-
ulating membrane affi nity and protein stability ( 7–9 ). In 
contrast to the stable thioether linkage of  S -prenylation, 
the thioester linkage of  S -acylation confers a reversible and 
dynamic nature on this modifi cation, and many recent ef-
forts are shedding light on how this modifi cation is regu-
lated ( 8–11 ). 

 There are a variety of methodologies to detect protein 
 S -acylation/palmitoylation in intact cells. A well-established 
method involves incubating cells with  3 H-labeled palmi-
tate, followed by autoradiography to visualize the degree 
of isotopic incorporation. However, this approach requires 
high levels of [ 3 H]palmitate (as many as several mCi per 
sample) and exposure times on the order of weeks ( 12, 13 ). 
More recent methods have cleverly circumvented these 
issues by using nonradioactive derivatives of palmitate, 
which can be enriched or detected via cycloaddition re-
actions ( “click chemistry”) ( 14–17 ). Nonetheless, these 
“palmitate-centric” approaches are encumbered by  i ) the 
need for radioactive or chemically modifi ed palmitate 
analogs;  ii ) the likely bias for proteins that undergo 
rapid palmitate turnover versus proteins that are more 
stably palmitoylated;  iii ) diffi culty in detecting individual 
 S -acylated proteins or their specifi c sites of  S -acylation; 
and  iv ) the inability to detect proteins that are acylated 
with moieties other than palmitate (e.g., shorter, longer, 
or unsaturated lipid chains). 

 Recently, a “cysteine-centric” approach to identify 
 S -acylated proteins was introduced that uses the conversion 
of the protein thioester to a disulfi de-linked biotin ( 18, 19 ). 
This assay, known as acyl-biotin exchange (ABE), is readily 
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 Protein cysteine residues undergo a wide variety of 
chemical reactions owing to thiol nucleophilicity and re-
dox reactivity. These reactions include  S -nitrosylation ( 1, 
2 ),  S -prenylation ( 3, 4 ), and  S -acylation ( 5, 6 ), which in-
volve the adduction of nitroso, isoprenyl (thioether), and 
acyl (thioester) moieties, respectively. Within mammalian 
cells, an important type of  S -acylation involves  S -palmitoyl-
ation (the attachment of a 16 carbon fully saturated lipid 
moiety).  S -palmitoylation has been shown to signifi cantly 
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reverse 3 ′ - primer 5 ′ -ATTAGAATTCTTAATGGCAGCTTTTGGG-
TCCACTGC-3 ′  was used for C150S; primer 5 ′ -ATTAGAATTCTT-
AATGGCTGCATTTGGGTCCACTGC-3 ′  was used for C151S; 
and primer 5 ′ -ATTAGAATTCTTAATGGCTGCTTTTGGGTCCA-
CTGC-3 ′  was used for C 150/151 S. Other Cys-to-Ser point mutations 
were generated with a QuikChange XL II kit (Stratagene) according 
to the manufacturer’s instructions, using primers 5 ′ -CGGC-
AGCATGAGCAGCAAGTGTG’3- and 5 ′ -CACACTTGCTGCTC-
ATG CTGCCG-3 ′  for pDNA3.1-3xHA-H-Ras C 181/184 S; primers 
5 ′ -AATGCCAGCAGTGGGACAAGGAGTGC-3 ′  and 5 ′ -GCACTC-
CTTGTCCCACTGCTGGCATT-3 ′  for Sec61B C39S; and primers 
5 ′ -CATTGACAAGAAAAGCCCCTTCACTGG-3 ′  and 5 ′ -CCAG-
TGAAGGGGCTTTTCTTGTCAATG-3 ′  for Rps11 C60S. 

 Detection of  S -acylated proteins by acyl-RAC 
 Following the indicated treatments/transfections, cells were 

collected and washed in cold PBS. After undergoing a freeze-
thaw cycle, cells were lysed in lysis buffer (25 mM HEPES, 25 mM 
NaCl, 1 mM EDTA, pH 7.5) containing protease inhibitor cock-
tail (Roche). Lysis was improved by repeated passaging through 
a 28 gauge needle. For enrichment of membranes, lysates were 
depleted of nuclei via centrifugation at 800  g  for 5 min. The super-
natant was then centrifuged at 20,000  g  for 30 min, and the pellet 
was resuspended in lysis buffer containing 0.5% Triton X-100. 
Total protein was quantifi ed with a bicinchononic acid (BCA)   assay 
(Pierce) using BSA as the standard. Methodology for acyl-RAC, in-
cluding blocking of free thiols with methyl methanethiosulfonate 
(MMTS), cleavage of thioester linkages, and capture of nascent 
thiols on thiopropyl Sepharose, was carried out essentially as de-
scribed previously ( 23 ). In particular, equal amounts of protein 
(0.5–2.0 mg for immunoblot experiments and 10–20 mg for mass 
spectrometry experiments) were diluted to a concentration of 
2 mg/ml in blocking buffer (100 mM HEPES, 1.0 mM EDTA, 
2.5% SDS, 0.1% MMTS, pH 7.5) and incubated at 40°C for 10 
min with frequent vortexing. Three volumes of cold acetone 
were added, and proteins were allowed to precipitate at  � 20°C 
for 20 min. Following centrifugation of the solution at 5,000  g  for 
10 min, the pellet was extensively washed with 70% acetone, re-
suspended in 300  � l of binding buffer (100 mM HEPES, 1.0 mM 
EDTA, 1% SDS, pH 7.5) and added to  � 40  � l of prewashed thio-
propyl Sepharose (GE-Amersham). To this mixture was added 40 
 � l of either 2 M NH 2 OH (freshly prepared in H 2 O from HCl salt 
and brought to pH 7.5 with concentrated NaOH) or 2 M NaCl. 
Binding reactions were carried out on a rotator at room tempera-
ture for 2–4 h. Approximately 20  � l of each supernatant was 
saved as the “total input.” Resins were washed at least fi ve times 
with binding buffer. For immunoblot analysis, elution was per-
formed using 60  � l of binding buffer containing 50 mM DTT at 
room temperature for 20 min. Supernatants were removed and 
mixed with Laemmli loading buffer, heated to 95°C for 5 min, 
and separated via SDS-PAGE on a Mini-Gel apparatus (Bio-Rad). 

 On-resin trypsinization and mass spectrometric analysis 
of  S -acylated sites 

 This procedure was performed essentially as described previ-
ously ( 23 ) but is fully detailed in the supplementary information 
(available at http://www.jlr.org). 

 RESULTS 

 Application of the acyl-RAC technique using purifi ed 
bovine brain membranes 

 The acyl-RAC assay is chemically analogous to the ABE 
assay, although it replaces the biotinylation/avidin pull-down 

adapted to immunoblotting techniques and is also adapt-
able to mass spectrometric-based identifi cation of individ-
ual  S -acylated proteins ( 19–22 ). However, the detection of 
biotinylated proteins requires expensive reagents and com-
plicated procedures (e.g., repeated protein precipitations, 
SDS neutralization, and avidin pull down). We recently 
provided an initial description of a simple and robust alter-
native to ABE that uses the detection of  S -acylated species 
via resin-assisted capture (acyl-RAC) in lieu of biotinylation 
( 23 ). The method is rapid (the entire procedure can be 
completed in several hours) and is readily adapted to mass 
spectrometry techniques for identifying sites of  S -acylation. 
Here we provide a detailed validation and expansion of the 
acyl-RAC method and demonstrate its effi cacy in detecting 
 S -acylated protein substrates and sites of modifi cation. 

 EXPERIMENTAL PROCEDURES 

 Materials and reagents 
 All materials were obtained from Sigma Chemicals (St. Louis, 

MO), unless otherwise indicated. Sources of antibodies were mouse 
MAb  � -HA (code 2367; Cell Signaling Technology); and rabbit poly-
clonal antibody  � -H-Ras (code sc-520; Santa Cruz Biotechnology). 
Bovine brain membranes were isolated as described previously ( 24 ). 

 Mammalian cell culture and transfection 
 All cells were cultured at 37°C in a 5% C O  2  atmosphere. Cell 

lines were obtained from the Duke Cell Culture Facility and 
grown in DMEM   (HEK293 cells) or McCoy’s 5A medium (T24 
cells) supplemented with 10% FBS, 100 U/ml penicillin, and 100 
 � g/ml streptomycin. Cells were transfected with Superfect (Qiagen) 
per the manufacturer’s instructions. In general, HEK293 cells 
were grown in 10 cm dishes to 70%–80% confl uency and trans-
fected with 12  � g of the indicated DNA and 48  � l of Superfect 
(Qiagen). Approximately 24 h later, cells were harvested with 
cold PBS and used immediately. 

 Cloning and DNA manipulation 
 All PCR procedures were performed with Advantage  Taq  DNA 

polymerase (Clontech), and products were verifi ed by DNA se-
quencing (Duke DNA Sequencing Facility). The pCDNA3.1-3xHA-
H-Ras construct was acquired from Missouri S and T cDNA Resource 
Center (product no. RASH00TN00). Integrated Molecular Analysis 
of Genomics and Expression (IMAGE) clones containing cDNAs 
for human Sec61B (BC001734), Rps11 (BC070224), and MGST3 
(BC005964) were acquired from OpenBiosystems (shown in paren-
theses are the corresponding Genbank accession numbers). These 
three cDNAs were amplifi ed by PCR and subcloned into pIRES-
puro3 (Clontech) at the 5 ′ - Nhe I and 3 ′ - Eco RI sites to generate 
mammalian expression vectors containing an N- or C-terminal 
hemagglutinin (HA)-tagged cDNA. Primers used for generating 
pIRES-puro3-Sec61B-HA were 5 ′ -TATTAGCTAGCACCATGGCTG-
GTCCGACCCCCAGTG-3 ′  and 5 ′ -TTAAGAATTCTTAAGCGT-
AGT CTGGGACGTCGTATGGGTACGAACGAGTGTACTTGCC C-
CA AATG-3 ′ ; primers for pIRES-puro3-Rps11-HA were 5 ′ -TATT-
AGCTAGCACCATGGCGGACATTCAGACTGAG-3 ′  and 5 ′ -TTA-
A GAATTCTTAAGCGTAGTCTGGGACGTCGTATGGGTAGAAC-
T TCTGGAACTGCTTCTTGGTGCC-3 ′ ; and primers for pIRES-
puro3-HA-MGST3 were 5 ′ -TATTAGCTAGCACCATGGTTTAC-
CCATACGACGTCCCAGACTACGCTGCTGTCCTC TCTAAGG-3 ′  
and 5 ′ -TTAAGAATTCTTAATGGCAGCATTTGGGTCC-3 ′ . Point 
mutations in MGST3 were generated via PCR as above, except 
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the acyl-RAC technique can be applied to the isolation 
and identifi cation of  S -acylated proteins in complex bio-
logical samples. 

 Application of acyl-RAC to analysis of H-Ras, a model 
 S -palmitoylated protein 

 To further explore the utility of acyl-RAC to detect 
 S -acylation in an intact mammalian cell culture system, 
HEK293 cells were transfected with vectors encoding 
H-Ras, which is known to undergo  S -palmitoylation on 
Cys 181  and Cys 184  ( 27 ) and  S -farnesylation on Cys 186  ( 3, 4 ). 
The highly modifi ed C terminus of human H-Ras is shown 
in   Fig. 2A  . As shown in  Fig. 2B , acyl-RAC readily detected 
 S -palmitoylation of H-Ras in a hydroxylamine-dependent 
manner. Importantly, the C 181/184 S double   mutant, which 
cannot undergo  S -acylation, was not detected. Further-
more, because the C 181/184 S mutant continues to undergo 
 S -farnesylation on Cys 186  ( 28 ), these results confi rm the ex-
pected result that acyl-RAC does not detect  S -prenylated 
proteins (because the thioether linkage is not susceptible 
to hydroxylamine cleavage). Further confi rmation that 
the protein species identifi ed by acyl-RAC are indeed 
 S -acylated was provided by the observation that the degree 
of H-Ras  S -palmitoylation was attenuated by incubation 
with 2-bromopalmitate, a known inhibitor of  S -palmitoyla-
tion ( Fig. 2C ). Endogenous  S -palmitoylated H-Ras could 
also be readily detected in the T24 bladder carcinoma cell 
line (supplementary Fig. IIA), in which the oncogenic 
G 12 V variant of H-Ras is known to drive the tumorigenic 
phenotype ( 29 ). 

step with the use of direct conjugation to resin containing 
thiol-reactive thiopyridinyl groups (  Fig. 1  ). This strategy is 
advantageous for examining cysteine-based modifi cations 
because it is rapid and economical, and it allows the resin-
immobilized proteins to be processed conveniently with 
virtually any chemical or enzyme treatment, except reduc-
tants (which would drive elution). As shown in supple-
mentary Fig. I, acyl-RAC was applied to examine  S -acylated 
proteins in bovine brain membranes, which are known to 
be rich in  S -palmitoylated proteins. A number of proteins 
were readily detected by acyl-RAC in a hydroxylamine- 
dependent manner via Coomassie staining of eluted pro-
teins resolved by SDS-PAGE. In addition  , two  S -palmitoylated 
proteins known to be present in brain, G � z ( 25 ) and GAP-
43 ( 26 ), were readily detected by immunoblot analysis 
of acyl-RAC proteins, and only if the samples had been 
treated with hydroxylamine to cleave endogenous 
thioesters. In contrast, synaptophysin, which is not a sub-
strate for  S -acylation, was not detected by acyl-RAC. Thus, 

  Fig.   1.  A schematic overview of the acyl-RAC assay. Free   thiols are 
fi rst blocked with MMTS. Thioesters are then cleaved with neutral 
hydroxylamine (NH 2 OH), and the newly liberated thiols are cap-
tured with thiol-reactive Sepharose resin. After being washed, cap-
tured proteins are eluted with reductant and analyzed by SDS-PAGE 
with either protein staining or immunoblotting. To identify indi-
vidual sites of  S -acylation, captured proteins are subjected to “on-
resin” proteolysis (typically with trypsin), and resulting peptides 
are eluted and analyzed by mass spectrometry (LC-MS/MS). X, 
2-thiopyridyl.   

  Fig.   2.  Detection of  S -acylated H-Ras by acyl-RAC. A: H-Ras C ter-
minus and associated posttranslational modifi cations. H-Ras un-
dergoes  S -acylation at Cys 181  and Cys 184  (via thioester linkages), as well 
as  S -prenylation at Cys 186  (via a thioether linkage). B:   HEK293   cells 
were transfected with wild-type (WT) HA-H-Ras or the Cys 181/184 Ser 
mutant of HA-H-Ras and subjected to acyl-RAC, and captured pro-
teins were analyzed by immunoblotting for HA. C: HEK293 cells 
were transfected with WT HA-H-Ras for 18 h and then treated with 
2-bromopalmitate (2-BP)for another 18 h. Cells were subjected to 
acyl-RAC and analyzed by immunoblotting for HA.   
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  Fig.   3.  Identifi cation of  S -acylation sites by acyl-RAC coupled 
with mass spectrometry. A: Representative MS/MS spectrum of the 
N-terminal peptide from the heterotrimeric GTPase G �  s  contain-
ing Cys 3 , the known site of  S -palmitoylation. The 117 amu peak 
corresponds to the reporter ion from the NH 2 OH+ sample, whereas 
the 114 amu peak (control) was not detected. B: Representative list 
of known  S -acylated sites identifi ed by MS-coupled acyl-RAC (see 
supplementary Table I for the complete listing of sites identifi ed). 
C: Validation of MS data by transfection of HEK293 cells with puta-
tive  S -acylated proteins followed by acyl-RAC and immunoblotting 
for the specifi ed individual proteins. In each case, the identifi ed 
sites of  S -acylation were mutated to serine as noted. For MGST3, 
the identifi ed peptide contained two Cys residues (Cys 150  and 
Cys 151 ); therefore, both single and double mutants (DM) were 
subjected to acyl-RAC.   

 Validation of novel  S -acylated targets identifi ed via 
MS-coupled acyl-RAC 

 To examine the fi delity of MS-based identifi cation of 
 S -acylation sites from acyl-RAC-identifi ed proteins, three 
candidate proteins that were not previously studied in the 
context of  S -acylation were selected for further analysis: 
the  � -subunit of the protein translocating system (Sec61b), 
ribosomal protein S11 (Rps11), and microsomal glutathi-
one- S -transferase 3 (MGST3). These three proteins, and 
mutations of each in which the identifi ed  S -acylated Cys 
had been changed to a Ser residue, were expressed in 
HEK293 cells. Cells were transfected with the respective 
HA-tagged constructs and then analyzed by acyl-RAC with 
anti-HA immunoblotting. As shown in  Fig. 3C , acyl-RAC 

 Although H-Ras is a highly studied prototype of  S -acy-
lated proteins, a more complex system was desired to 
verify the general applicability of acyl-RAC. To that end, 
a membrane-enriched fraction from HEK293 cells was 
pretreated with either buffer or palmitoyl-CoA, followed 
by analysis via acyl-RAC and direct visualization of cap-
tured proteins via SDS-PAGE and Coomassie staining 
(supplementary Fig. IIB). Capture of cellular proteins 
was both augmented by palmitoyl-CoA pretreatment and 
dependent on NH 2 OH during the assay, demonstrating 
that acyl-RAC can detect a range of  S -palmitoylated 
proteins. 

 Mass spectrometry-coupled acyl-RAC for identifi cation of 
 S -acylation sites 

 We also assessed the utility of acyl-RAC in identifi ca-
tion of specifi c sites of  S -acylation on captured proteins, 
by using isobaric labeling and LC-MS/MS. Samples   of a 
membrane-enriched fraction from HEK293 cells were 
subjected to the acyl-RAC procedure in the presence 
and absence of NH 2 OH, followed by on-resin trypsiniza-
tion of captured proteins and isobaric labeling with ei-
ther iTRAQ-114 atomic mass units (amu) (control) or 
iTRAQ-117 amu (plus NH 2 OH) reporter tags. Resins 
containing the proteins captured from both conditions 
were combined, and the resulting eluants were analyzed 
by LC-MS/MS. From a search of the human Swiss-Prot 
database, 93 putative sites of  S -acylation on 88 peptides 
were identifi ed (supplementary Table I), including a 
number of sites previously known to undergo  S -palmi-
toylation (Fig. 3B). Of the 88 identifi ed peptides, 84 
peptides contained at least one Cys residue (the data-
base search was not restricted to Cys-containing pep-
tides and therefore provided another internal control). 
As an example, data obtained from the  � -subunit of the 
heterotrimeric G-protein G s , which is palmitoylated on 
the N-terminal Cys 3  ( 30, 31 ), are shown (Fig. 3A). This 
N-terminal peptide containing Cys 3  was identifi ed by 
MS-coupled acyl-RAC, whereas none of the 7 other po-
tential Cys-containing peptides from G s  were identifi ed 
in the analysis. These data further validate the utility of 
acyl-RAC for identifying sites of  S -palmitoylation in in-
tact cells. 

 Several other established sites of  S -acylation that were 
identifi ed by using acyl-RAC are shown in  Fig. 3B . These 
sites include Cys 9  and Cys 10  within the  � -subunit of the het-
erotrimeric G-protein, G 11  ( 32 ), Cys 181  and Cys 184  of H-Ras 
( Fig. 2A, B,  and see reference [ 27 ]), as well as 6 Cys resi-
dues within SNAP23, of which 4 are conserved in its better-
studied homolog SNAP25, a known  S -palmitoylated 
protein ( 33 ). Also identifi ed was the active site cysteine, 
Cys 632 , of E1 ubiquitin activating enzyme 1 (UBA1). This 
protein is known to form a thioester with the C-terminal 
glycine of ubiquitin at Cys 632  ( 34 ), which is required for 
ubiquitin transfer to downstream E2 proteins. Although 
UBA1 contains 19 Cys residues, acyl-RAC detected only 
the Cys-containing peptide from the active site, demon-
strating that acyl-RAC is capable of identifying diverse 
types of  S -acylation. 
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